domingo, 12 de enero de 2014

Redes cristalinas

Peña M. Axel A.
La mayor parte de los sólidos de la naturaleza son cristalinos lo que significa que los átomos, moléculas o iones que los forman se disponen ordenados geométricamente en el espacio. Esta estructura ordenada no se aprecia en muchos casos a simple vista porque están formados por un conjunto de micro cristales orientados de diferentes maneras formando una estructura poli cristalina, aparentemente amorfa. Este "orden" se opone al desorden que se manifiesta en los gases o líquidos. Cuando un mineral no presenta estructura cristalina se denomina amorfo.
La cristalografía es la ciencia que estudia las formas y propiedades fisicoquímicas de la materia en estado cristalino.
Las redes cristalinas se caracterizan fundamentalmente por un orden o periodicidad. La estructura interna de los cristales viene representada por la llamada celdilla unidad que se repite una y otra vez en las tres direcciones del espacio. El tamaño de esta celdilla viene determinado por la longitud de sus tres aristas (a, b, c), y la forma por el valor de los ángulos entre dichas aristas (α,β,γ). El conjunto de elementos de simetría de un objeto que pasan por un punto, definen la simetría total del objeto (grupo puntual de simetría). Hay muchos grupos puntuales, pero en los cristales éstos han de ser compatibles con la periodicidad (repetitividad por traslación) por lo que hay sólo 32 posibles grupos puntuales que se denominan clases cristalinas. Combinando las dos traslaciones y el ángulo que forman entre sí, sólo hay cinco posibles formaciones de redes planas: paralelogramo, rectángulo, cuadrado, hexágono y rombo.
Si formamos una red espacial apilando estas redes planas, sólo existen catorce posibles formaciones que representan las formas más sencillas en que puede descomponerse la materia cristalina sin que por ello pierdan sus propiedades originales, son las llamadas redes de Bravais.
Los cristales presentan formas más o menos regulares con definición de aristas, caras y vértices. Internamente,
Están constituidos por partículas que guardan entre sí relaciones y distancias fijas; estos parámetros internos se estudian mediante rayos X, mientras que los externos se realizan midiendo los ángulos que forman sus caras.
ESTRUCTURA CRISTALINA:
• Estado amorfo: Las partículas componentes del sólido se agrupan al azar.
• Estado cristalino: Los átomos (moléculas o iones) que componen el sólido se disponen
según un orden regular. Las partículas se sitúan ocupando los nudos o puntos singulares
de una red espacial geométrica tridimensional
Los átomos que pertenecen a un sólido cristalino se pueden representar situándolos en una red tridimensional, que se denomina retículo  espacial o cristalino. Este retículo espacial se  puede definir como una repetición en el espacio de celdas unitarias.
La celda unitaria de la mayoría de las estructuras cristalinas son paralelepípedos o prismas con tres conjuntos de caras paralelas Según el tipo de enlace atómico, los cristales pueden ser de tres tipos:
a)  Cristales iónicos: punto de fusión elevado, duros y muy frágiles, conductividad eléctrica baja y presentan cierta elasticidad. Ej: NaCl (sal común).
b)    Cristales covalentes: Gran dureza y elevada temperatura de fusión. Suelen ser transparentes quebradizos y malos conductores de la electricidad. No sufren deformación plástica (es decir, al intentar deformarlos se fracturan). Ej: Diamante.
c)     Cristales metálicos: Opacos y buenos conductores térmicos y eléctricos. No son tan duros como los anteriores, aunque si maleables y dúctiles. Como el Hierro, estaño, cobre etc.
Según la posición de los átomos en los vértices de la celda unitaria de la red cristalina existen:
a) Redes cúbicas sencillas: Los átomos ocupan sólo los vértices de la celda unidad.
b) Redes cúbicas centradas en el cuerpo (BCC): Los átomos, además de ocupar los vértices, ocupan el centro de la celda. En este caso cristalizan el hierro y el cromo.
c) Redes cúbicas centradas en las caras (FCC): Los átomos, además de ocupar los vértices, ocupan el centro de cada cara de la celda. Cristalizan en este tipo de redes el oro, cobre, aluminio, plata etc.
d) Redes hexagonales compactas (HC): La celda unitaria es un prisma hexagonal con átomos en los vértices y cuyas bases tiene un átomo en el centro. En el centro de la celda hay tres átomos más. En este caso cristalizan metales como cinc, titanio y magnesio.
       

      Redes FCC    

     
        
        Redes HC 








REFERNCIAS:

Video:



No hay comentarios.:

Publicar un comentario